管它们的顺序如何,都是一种情况,所以分组后一定要除以A(n为均分的组数),避免重复计数部分均分解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数不等分组只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数能力练通抓应用体验的“得”与“失”1.[考点一]A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐在最北面的椅子上,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )A.60种?B.48种C.30种?D.24种解析:选B 由题知,可先将B,C二人看作一个整体,再与剩余人进行排列,则不同的座次有AA=48种.2.[考点一]有5列火车分别准备停在某车站并行的5条轨道上,若快车A不能停在第3道上,货车B不能停在第1道上,则5列火车不同的停靠方法数为( )A.56?B.63C.72?D.78解析:选D 若没有限制,5列火车可以随便停,则有A种不同的停靠方法;快车A停在第3道上,则5列火车不同的停靠方法为A种;货车B停在第1道上,则5列火车不同的停靠方法为A种;快车A停在第3道上,且货车B停在第1道上,则5列火车不同的停靠方法为A种.故符合要求的5列火车不同的停靠方法数为A-2A+A=120-48+6=78.3.[考点三]某局安排3名副局长带5名职工去3地调研,每地至少去1名副局长和1名职工,则不同的安排方法总数为( )A.1800?B.900C.300?D.1440解析:选B 分三步:第一步,将5名职工分成3组,每组至少1人,则有种不同的分组方法;第二步,将这3组职工分到3地有A种不同的方法;第三步,将3名副局长分到3地有A种不同的方法.根据分步乘法计数原理,不同的安排方案共有·AA=900(种),故选B.