全文预览

2011年江苏省高中数学学案:28《对数函数性质的运用》(苏教版必修1)

上传者:菩提 |  格式:doc  |  页数:9 |  大小:312KB

文档介绍
2+16.可知,x<3时g(x)为增函数,x>3时,g(x)为减函数.因此,若–1<x1<x2<3.则g(x1)<g(x2)即7+6x1–x12<7+6x2–x22,而y=log4x为增函数.∴log4(7+6x1–x12)<log4(7+6x2–x22),即y1<y2.故函数y=log4(7+6x–x2)的单调增区间为(–1,3),同理可知函数y=log4(7+6x–x2)的单调减区间为(3,7).又g(x)=–(x–3)2+16在(–1,7)上的值域为(0,16.所以函数y=log4(7+6x–x2)的值域为(–∞,2.【解后反思】我们应明白函数的单调区间必须使函数有意义.因此求函数的单调区间时,必先求其定义域,然后在定义域内划分单调区间.求函数最值与求函数的值域方法是相同的,应用函数的单调性是常用方法之一.5.已知函数y=loga(1-ax)(a>0,a≠1),(1)求函数的定义域与值域;(2)求函数的单调区间.【思路分析】有关于对数函数的定义域要注意真数大于0;函数的值域取决于1-ax的范围,可应用换元法,令t=1-ax以减小思维难度;运用复合函数单调性的判定法求单调区间;函数图象关于y=x对称等价于原函数的反函数就是自身,本题要注意对字母参数a的范围讨论.解:(1)1-ax>0,即ax<1,∴a>1时,定义域为(-∞,0);0<a<1时,定义域为(0,+∞).令t=1-ax,则0<t<1,而y=loga(1-ax)=logat.∴a>1时,值域为(-∞,0);0<a<1时,值域为(0,+∞).(2)∵a>1时,t=1-ax在(-∞,0)上单调递减,y=logat关于t单调递增,∴y=loga(1-ax)在(-∞,0)上单调递减.∵0<a<1时,t=1-ax在(0,+∞)上单调递增,而y=logat关于t单调递减,∴y=loga(1-ax)在(0,+∞)上单调递减.

收藏

分享

举报
下载此文档