的球面距离为,求过、的平面中,与球心的最大距离是多少?分析:、是球面上两点,球面距离为,转化为球心角,从而,由关系式,越小,越大,是过、的球的截面圆的半径,所以为圆的直径,最小.解:∵球面上、两点的球面的距离为.∴,∴.当成为圆的直径时,取最小值,此时,取最大值,,即球心与过、的截面圆距离最大值为.说明:利用关系式不仅可以知二求一,而且可以借此分析截面的半径与球心到截面的距离之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角有关,而球心角又直接与长度发生联系,这是使用或者求球面距离的一条基本线索.典型例题3——其它问题例5.自半径为的球面上一点,引球的三条两两垂直的弦,求的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以为从一个顶点出发的三条棱,将三棱锥补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.=.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.例6.试比较等体积的球与正方体的表面积的大小.分析:首先抓好球与正方体的基本量半径和棱长,找出等量关系,再转化为其面积的大小关系.解:设球的半径为,正方体的棱长为,它们的体积均为,则由,,由得...,即.典型例题4——球与几何体的切、接问题例7 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图作轴截面,设球未取出时水面高,球取出后,水面高∵,,则以为底面直径的圆锥容积为,球取出后水面下降到,水体积为.