0°∴∠ABC=∠ABF=45°,故正确∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°∴△ACD∽△FEQ∴AC∶AD=FE∶FQ∴AD·FE=AD²=FQ·AC,故④正确7.【答案】A.【解析】试题分析:如图,四边形ABCD是菱形,,,根据菱形的性质可得OA=4,OB=3,由勾股定理可得AB=5,再由即可求得DH=,故答案选A.考点:菱形的性质.8.【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.9.【考点】菱形的性质;矩形的性质.【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.10.【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值. 【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处, ∴FB=AB=2,BM=1, 则在Rt△BMF中, FM=, 故选:B. 【点评】此题考查了翻折变换的性质,适时利用勾股定理是解答此类问题的关键.