全文预览

高考数学-三角函数大题综合训练

上传者:幸福人生 |  格式:doc  |  页数:12 |  大小:404KB

文档介绍
C+1=2sinAsinC.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.解:(Ⅰ)由2cosAcosC+1=2sinAsinC得:∴2(cosAcosC﹣sinAsinC)=﹣1,∴,∴,又0<B<π,∴.(Ⅱ)由余弦定理得:,∴,又,,∴,故,∴.25.(•云南一模)在△ABC中,a,b,c分别是内角A,B,C的对边,且=(sinA+sinB+sinC,sinC),=(sinB,sinB+sinC﹣sinA),若(1)求A的大小;(2)设为△ABC的面积,求的最大值及此时B的值.解:(1)∵∥,∴(sinA+sinB+sinC)(sinB+sinC﹣sinA)=sinBsinC根据正弦定理得(a+b+c)(c+b﹣a)=bc,即a2=b2+c2+bc,由余弦定理a2=b2+c2﹣osA,得cosA=﹣,又A∈(0,π),∴A=;(2)∵a=,A=,∴由正弦定理得====2,∴b=2sinB,c=2sinC,∴S=bcsinA=×2sinB×2sinC×=sinBsinC,∴S+cosBcosC=sinBsinC+cosBcosC=cos(B﹣C),∴当B=C时,即B=C=时,S+cosBcosC取最大值.27.(•高安市校级模拟)在△ABC中,角A、B、C所正确边分别为a、b、c,已知sin(A+)+2cos(B+C)=0,(1)求A的大小;(2)若a=6,求b+c的取值范围.解:(1)由条件结合诱导公式得,sinAcos+cosAsin=2cosA,整理得sinA=cosA,∵cosA≠0,∴tanA=,∵0<A<π,∴A=;(2)由正弦定理得:,∴,,∴==,∵,∴,即6<b+c≤12(当且仅当B=时,等号成立)28.(•威海一模)△ABC中,A,B,C所正确边分别为a,b,c,,sin(B﹣A)=cosC.(Ⅰ)求A,B,C;(Ⅱ)若S△ABC=3+,求a,c.

收藏

分享

举报
下载此文档