从根本上说就是获得了自己独立解决数学问题的能力。(三)化曲为直,突破空间障碍“化曲为直”的转化思想是小学数学曲面图形面积学习的主要思想方法。它可以把学生的思维空间引向更宽更广的层次,形成一个开放的思维空间,为学生今后的发展打下坚实的基础。例如,圆面积的教学,教师在教学过程中,先请学生把圆16等分以后,请他们动手拼成近似的平面图形,即用转化思想,通过“化曲为直”来达到化未知为已知。学生兴趣盎然,通过剪、摆、拼以及多种感官协同参与活动,拼出以下图形。转化在小学数学中的有效策略(一)实施“转化”的前提是摸清学生的“最近发展区”教育对儿童的发展能够起到主导和促进作用,但需要确定儿童发展的两种水平:一种是已经达到的发展水平,另一种是儿童可能达到的发展水平。后者就是所谓的“最近发展区”。(二)在获取新知的过程中,让转化思想成为首选的数学思想在小学数学教学中,提倡学生拥有多元化的数学思想,就要培养学生的发散思维能力,但“集中思维”也是不可或缺的。笔者所说的“集中思维”是向转化思想的集中。转化思想成为指导小学生学习与思考重要法宝,“遇题必思,解题必用”。总之,转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。【参考文献】[1]金雪根.培养学生转化思想的认识与实践[J].小学教学参考,2003(4):31-32.[2]周家学.浅淡中学数学中的转化思想[J].教学研究,2007(6):61.[3]卫星.化思想在小学数学教学中的运用[J].教学与管理,2009(7):40-42.[4]鲍善军,余真彪.如何培养学生运用转化思想的能力[J].新课程研究,2010(5):159.