列式推导,直接分析便可:1千克苹果和2千克香蕉6.5元,那么可得出2千克苹果和4千克香蕉13元;题中已知2千克苹果和3千克香蕉11元。用13减去11的2,所以香蕉的单价是每千克2元。再通过计算得苹果的单价是每千克2.5元。Р(3)化未知问题为已知问题。Р对于学生而言,学习的过程是一个不断面对新知识的过程,有些新知识通过某些载体直接呈现,如面积和面积单位,通过一些物体或图形直接引入概念;而有些新知识可以利用已有知识同伙探索,把新知识转化为旧知识进行学习,通过割补平移,把平行四边形转化为已知长方形求面积。这种化为知为已知的策略,在数学学习中非常常见。下面举例说明。Р案例6:水果商店昨天销售的苹果比香蕉的2倍多30千克,这两种水果一共销售了180千克。销售香蕉多少千克?Р分析:学生在学习列式方程解决问题时学习了最基本的有关两个数量的一种模型:已知两个数量的倍数关系以及这两个数量的和或差,求这两个数量分别是多少。题中的苹果和香蕉的关系,不是简单的倍数关系;而是在倍数的基础上增加了一个条件,即苹果比香蕉的2倍还多30千克。假如把180减去30得150,那么题目可以转化为:“如果水果商店昨天销售的苹果是香蕉的2倍,那么这两种水果一共销售了150千克。销售香蕉多少千克?”这时就可以列方程解决了,设未知数时要注意设水位X,题目中求的是哪个量。这个案例能给我们什么启示呢?教师在教学中要学生学习什么?学生既要学习知识,又要学习方法。学生不仅要学会类型套类型的解题模式,更重要的是理解和掌握最基本的数学模型的基础上,形成迁移类推或举一反三的能力。教师在上面最基本的模型基础上,可以引导学生深入思考一下几个问题:Р①水果商店昨天销售的苹果必香蕉的2倍少30千克,这两种一共销售了180千克。销售苹果多少千克?Р②水果商店昨天销售的香蕉比苹果的多30千克,这两种水果一共销售了180千克。销售苹果多少千克?