”、“无限”形式出现的命题。问题2.如图,△ABC的角平分线AD、BE相交于点O,点O到△ABC各边的距离相等吗?点O在∠C的平分线上吗?为什么?点拨:先运用角平分线性质定理,然后应用其逆定理。思考:你能用一个命题概括这一题吗?四.【小组交流】学生展示问题3.如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上2、如图,在△ABC中,∠C=90度,点D在BC上,DE垂直平分AB,且DE=DC。求∠B的度数。点拨:应用角平分线判定定理和相等垂直平分线性质定理。五.【课堂训练】拓展延伸问题3.如图,已知∠B=∠C=90º,M是BC中点,MN⊥AD,若∠1=∠2,求证∠3=∠4。拓展:你还有什么发现?六.【课堂小结】1.角平分线性质定理及其逆定理的内容是什么?我们是如何证明的?2.三角形的三条角平分线交于一点吗?我是然后证明的?3.反证法的一般步骤有哪些?4.你还有哪些困惑?随堂练习课外作业第二章一元一次不等式与一元一次不等式组2.1不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系教学重点和难点:重点:对不等式概念的理解难点:怎样建立量与量之间的不等关系。从问题中来,到问题中去。如图1-1,用用根长度均为l㎝的绳子,分别围成一个正方形和圆。(1)如果要使正方形的面积不大于25㎝2,那么绳长l应满足怎样的关系式?(2)如果要使圆的面积大于100㎝2,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形和圆的面积哪个大?l=12呢?(4)改变l的取值再试一试,在这个过程中你能得到什么启发?分析解答:在上面的问题中,所围成的正方形的面积可以表示为,圆的面积可以表示为。要使正方形的面积不大于25㎝2,就是,即。要使圆的面积大于100㎝2,就是>100,即>100当l=8时,正方形的面积为,圆的面积为,4<5.1,此时圆的面积大。