0整除.(2)若是△ABC的三边,且,试探索△ABC的形状,并说明理由。14.已知多项式(a2+ka+25)–b2,在给定k的值的条件下可以因式分解.(1)写出常数k可能给定的值;(2)针对其中一个给定的k值,写出因式分解的过程.15.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9),另一位同学因看错了常数项而分解成2(x﹣2)(x﹣4),请将原多项式分解因式.16.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.17.根据条件,求下列代数式的值:(1)若x(y﹣1)﹣y(x﹣1)=4,求的值;(2)若a+b=5,ab=3,求代数式a3b﹣2a2b2+ab3的值.(3)利用“配方法”分解因式:a2-6a+8.(4)若a+b=5,ab=6,求:a4+b4的值.第五章分式及分式方程★分母上含有字母的式子叫分式(不要约分,直接进行判断)如:也是分式★分式的基本性质:给分式的分子和分母都乘以(或除以)同一个不为零的整式,分式的值不变.★分式有意义:使分母不为零,分子有意义(主要是分子中含有平方根的情况)如:则4x-5≥0x-2≠0解得x≥且x≠2★分式值为零:分子为零,且分母不为零;最简分式:分子分母不能再进行约分的分式叫最简分式★分母中含有未知数的等式叫分式方程;★解分式方程时,解完后一定要检验,若算出的解使公分母为零,则该解为分式方程的增根;若算出的解使公分母不为零,则该解为分式方程的根.