为形,以形直观地表达数来解决,往往使复杂问题简单化、抽象问题具体化.但是,依赖图象直观解题,也要注意如下几个问题.1、注意图象延伸趋势【例19】判断命题:“当a>1时,关于x的方程ax=logax无实解.”正确与否. 错解:在同一坐标系中分别作出函数y=ax及y=logax的图象(a>1)(如图1),可见它们没有公共点,所以方程无实解,命题正确. 【评析】实际上对不同的实数a,y=ax和y=logax的图象的延伸趋势不同.例如当a=2时,方程无实数解;而当a=时,x=2是方程的解.说明两图象向上延伸时,一定相交,交点在直线y=x上.2、注意图象伸展“速度”【例20】比较2n与n2的大小,其中n≥2,且n∈N+. 错解:在同一坐标系中分别作出函数y=2x及y=x2的图象(如图2). 由图可知,两图象有一个公共点. 当x=2时,2x=x2; 当x>2时,2x<x2. ∴当n=2时,2n=n2; 当n>2,且n∈N+时,2n<n2. 【评析】事实上,当n=4时,2n与n2也相等;当n=5时,2n>n2.错因是没有充分注意到两个图象在x≥2时的递增“速度”!要比较两个图象的递增速度,确实很难由图象直观而得.本题可以先猜想,后用数学归纳法证明.本题的正确答案是 当n=2、4时,2n=n2; 当n=3时,2n<n2; 当n≥5时,n∈N+时,2n>n2. 证明略.3、注意数形等价转化【例21】已知方程x2+2kx-3k=0有两个实数在-1与3之间,求k的取值范围. 错解:令f(x)=x2+2kx-3k,结合题意画出图象3中的(1),再由图象列出不等 解略.【评析】事实上,不等式组(*)并不与题意等价,图象3中的(2)也满足不等式组(*),但两实根均大于3,还可以举出两实根均小于-1的反例.若不等式组(*)与图3中的(1)等价,需加上条件-3<k<1.因此,数形转化要注意等价性.