. 3.作B关于CD的对称点B′,连接AB′,交格线CD于Q,此时QA+QB=QA+QB′=AB′,根据两点之间线段最短,得此时QA+QB最小. 4.①过点A作AP⊥a,并在AP上向下截取AA′,使AA′的长等于河的宽度;②连接A′B交b于点D;③过点D作DE∥AA′交a于点C;④连接AC.则CD即为桥的位置.图略. 5.连接NC与AD的交点为M点.点M即为所求.图略. 6.(1)①作出点P关于AC、BC的对称点D、G.②连接DG交AC、BC于点M、N.点M、N即为所求.(2)设PD交AC于E,PG交BC于F,∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°.∴∠C+∠EPF=180°.∵∠C=52°,∴∠EPF=128°.∵∠D+∠G+∠EPF=180°,∴∠D+∠G=52°.由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=52°.∴∠MPN=128°-52°=76°. 7.(1)图略,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.(2)30° 8.作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,连接AM,AN,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠DAB=120°,∴∠HAA′=60°.∴∠AA′M+∠A″=∠HAA′=60°.∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°. 9.(1)图略,点A,B即为所求.画法:①作点M关于射线OP的对称点M′;②连接M′N交OP于点A;③作点N关于射线OQ的对称点N′;④连接N′M交OQ于点B.(2)AM+AN=BM+BN.21教育网