,学生代入数字。这样学生理解怎样列出方程。同时让学生根据以前学过的知识列算式。这样类型的应用题的解题能力也得到了一个提高;而不同的思维方法就能很好地培养了学生思维的灵活性。Р 2.条件与问题搭配的训练Р 这个训练我一般是出示题目后,要求学生先进行连线搭配,再进行列式计算、写答。经过具体的解答,学生对条件与问题的搭配有了一个自我检查过程。通过这样的训练,很大程度上提高了学生的辨析能力。Р 3.改编应用题的训练Р 改编应用题的训练,不但能提高学生的解题能力,而且还加强了学生对数量关系的横向联系的理解。在训练中,我经常用的方法是这样的:(1)按要求改变原题的某个条件与问题。如:原题是“学校食堂运来1吨煤,计划烧40天。由于改进炉灶后,每天节省5千克,这批煤可以烧多少天?”要求学生解答后把原题的第三个已知条件和问题改成“改进炉灶后,这批煤比原计划多烧10天,每天实际烧煤多少千克?”,改编后再解答。(2)相遇求路程的应用题用不同的方法解。如:小强和小丽同时从自己家走向学校,小强每分钟走65米,小丽每分钟走70米,经过4分钟,两人在校门口相遇他们相距多少米?(3)让学生理解题意,提问:要求他们两家相距多少米就是求什么?怎样求?先让学后发表意见:发表了两种不同的意见,第一种解法是:先求两人各自走的路程,再加起来。第二种解法是,先求出每分两个所走路程的和,再求4分钟两人所走的路程的和。引导学生对比两种解法的算式,并看看它们之间有什么联系?哪种算式计算简便? Р 通过以上几种训练,可以使学生加深对应用题的数量关系的认识,同时也向学生渗透了综合的思维方法和分析的思维方法。Р 总之,教学的规律是客观存在的,在教学中只要我们能领会好它的规律,遵循小学生思维发展的规律和认知特点,在教学中结合本班学生基础能力的实际情况,灵活变通地开展教学活动,定能培养起学生的学习兴趣、有效地提高学生解答应用题的能力。