值,是.当a<0时,开口向,有最点,函数有最值,是。.2.如何求二次函数y=ax2+bx+c(a≠0)的最值?有哪几种方法?写出求二次函数最值的公式(1)配方法求最值(2)公式法求最值问题1:用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?自主探究分析:先写出S关于l的函数关系式再求最大值。l解:由题意,得:s=x(30-x)即s与x之间的函数关系式为:s=-x2+30x配方,得:S=-(x-15)2+225又由题意,得:解之,得:∴当x=15时,s有最大值。∴当矩形的长、宽都是15米时,它的面积最大。思考:你是如何确定自变量l的取值范围的?问题2:现要用60米长的篱笆围成一个矩形(一边靠墙且墙足够长)的养鸡场地。设矩形与墙平行的一边长为x米,应怎样围才能使矩形的面积s最大。请设计出你的方案并求出最大面积。我来当设计师牛刀小试解:由题意,得:即s与x之间的函数关系式为:s=-x2+30x∴这个二次函数的对称轴是:x=30又由题意,得:解之,得:∴当x=30时,s最大值=450∴当与墙平行的一边长为30米,另一边长为15米时,围成的矩形面积最大,其最大值是450米2。问题3现要用60米长的篱笆围成一个矩形(一边靠墙且墙长28米)的养鸡场地。设矩形与墙平行的一边长为x米,应怎样围才能使矩形的面积s最大。请设计出你的方案并求出最大面积。亮出你的风采解:由题意,得:即s与x之间的函数关系式为:s=-x2+30x∴这个二次函数的对称轴是:x=30又由题意,得:解之,得:∴当x≤30时,s随x的增大而增大。∴当与墙平行的一边长为28米,另一边长为16米时,围成的矩形面积最大,其最大值是448米2。小结:在实际问题中,求解二次函数最值问题,不一定都取顶点处,要根据自变量的取值范围来确定,何时取顶点处,何时取端点,需结合实际来判断。