,是二次函数。(2)若是反比例函数,则且∴当时,是反比例函数。小结:1.二次函数y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同表示形式:(1)y=ax²(a≠0,b=0,c=0,).(2)y=ax²+c(a≠0,b=0,c≠0).(3)y=ax²+bx(a≠0,b≠0,c=0).(4)y=a(x-h)2(a≠0)(5)y=a(x-h)2+k(a≠0)2.定义的实质是:ax²+bx+c是整式,自变量x的最高次数是二次,自变量x的取值范围是全体实数.各种形式的特征二、二次函数的图象及性质抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)由a,b和c的符号确定由a,b和c的符号确定a>0,开口向上a<0,开口向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.xy0xy0(0,c)(0,c)抛物线开口方向对称轴顶点坐标a>0a<0y=axy=ax+ky=a(x-h)y=a(x-h)+k小结:222开口向下开口向上y轴(直线x=0)直线x=h(0,0)(0,k)(h,0)(h,k)当|a|的值越大时,抛物线开口越小,函数值y变化越快。当|a|的值越小时,抛物线开口越大,函数值y变化越慢。只要a相同,抛物线的形状(开口大小和开口方向)就相同。点评:二次函数的几种表现形式及图像①、②、③、④、⑤、(顶点式)(一般式)xyo1.如图,抛物线y=ax2+bx+c,请判断下列各式的符号:①a0;②c0;③b2-4ac0;④b0;xyO基础演练变式1:若抛物线的图象如图,则a=.变式2:若抛物线的图象如图,则△ABC的面积是。ABC小结:a决定开口方向,c决定与y轴交点位置,b2-4ac决定与x轴交点个数,a,b结合决定对称轴;