全文预览

2020年高考数学之冲破压轴题讲与练 专题20《 构造模型,应用问题数学化》【解析版】

上传者:梦溪 |  格式:doc  |  页数:31 |  大小:2180KB

文档介绍
在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元,当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元,当温度大于等于20时,Y>0,由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P.例9.(2015·湖北高考真题(理))(本小题满分14分)一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且,.当栓子在滑槽AB内作往复运动时,带动绕转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C的方程;(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【答案】(Ⅰ);(Ⅱ)存在最小值8.【解析】(Ⅰ)设点,,依题意,解答图,且,所以,且即且由于当点不动时,点也不动,所以不恒等于0,于是,故,代入,可得,即所求的曲线的方程为(Ⅱ)(1)当直线的斜率不存在时,直线为或,都有.(2)当直线的斜率存在时,设直线,由消去,可得.因为直线总与椭圆有且只有一个公共点,所以,即.①又由可得;同理可得.由原点到直线的距离为和,可得.②将①代入②得,.当时,;当时,.因,则,,所以,当且仅当时取等号.所以当时,的最小值为8.综合(1)(2)可知,当直线与椭圆在四个顶点处相切时,的面积取得最小值8.【压轴训练】1.(2020·湖南高三(理))英国统计学家辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述案件的终审结果如下表所示(单位:件):

收藏

分享

举报
下载此文档