全文预览

小学数学教学中渗透模型思想的案例

上传者:qnrdwb |  格式:doc  |  页数:2 |  大小:18KB

文档介绍
0.8元也就是十分之八元”(见右图)。接着,老师给学生提供一个空白的平均分成10份的长方形,任意涂出其中一部分,表示出一个小数和相应的分数。几个学生自由展示后,组织梳理,从0.1就是十分之一,0.2就是十分之二……师:接下来我们再来看看笔记本的价格,我给你一个图示(见下图),你知道它的价钱了吗?生:笔记本的价格是1.2师:刚才的小数都是“零点几”,现在怎么变成“一点几”了?生:现在有两个长方形了,第一个涂满了颜色,表示整1元。第二个平均分成了10份,涂了其中的2份,也就是2角钱,0.2元,合起来就是1.2元了。师:我买的钢笔的价钱是8.6元,如果让你画一幅图来表示它的价钱,你准备怎样画呢?生:我准备先画9个大小一样的长方形,然后把前面8个涂满颜色,第9个长方形平均分成10份,涂出其中的6份。……上述教学过程抓住了知识间的联系(小数和十进分数的关系)而展开,但又不是停留在教师直接的讲解和“告诉”,而是让学生充分展开探索过程,借助于直观图示的形象支撑,建立起了一位小数的“直观模型”(长方形等分、涂色)。这种形象的“直观模型”既搭起了小数和分数之间的桥梁,也具有强大的“扩展”功能,对后面学习两位小数、三位小数(同样的长方形,只是平均分成100份、1000份)以及抽象概括“小数的意义”具有统摄作用。从上述两例可以看出,运用建模思想来指导小学数学教学,在很大程度上是要在学生的认知过程中建立起一种统摄性、符号化的具有数学结构特征的“模型”载体,通过这样的具有“模型”功能的载体,帮助学生实现数学抽象,为后续学习提供强有力的基础支持。当然,对学生“模型”意识的培养和“建模”方法的指导,要根据具体内容和具体年级而有层次不同的要求,低年级要恰到好处地结合日常实例和常规教学对学生进行“模型”及“模型意识”的渗透、点化,高年级则可以更明确地引导学生关注数学学习中“模型”的存在,培养初步的建模能力。

收藏

分享

举报
下载此文档