全文预览

用导数解决函数单调性、极值、最值的方法步骤

上传者:业精于勤 |  格式:doc  |  页数:4 |  大小:221KB

文档介绍
(x)=-ax,其中a>0,求a的范围,使函数f(x)在区间[0,+∞)上是单调函数.分析:要使f(x)在[0,+∞)上是单调函数,只需f′(x)在[0,+∞)上恒正或恒负即可.解:f′(x)=-a.当x>0时,因为a>0,所以当且仅当a≥1时,f′(x)=-a在[0,+∞)上恒小于0,此时f(x)是单调递减函数.点评:要使f(x)在(a,b)上单调,只需f′(x)在(a,b)上恒正或恒负,即f′(x)>0(或<0)单调递增(或减).例5已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.解:(1)f′(x)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0,即解得a=1,b=0.∴f(x)=x3-3x,f′(x)=3x2-3=3(x+1)(x-1).令f′(x)=0,得x=-1,x=1.若x∈(-∞,-1)∪(1,+∞),则f′(x)>0,故f(x)在(-∞,-1)上是增函数,f(x)在(1,+∞)上也是增函数.若x∈(-1,1),则f′(x)<0,故f(x)在(-1,1)上是减函数.所以f(-1)=2是极大值,f(1)=-2是极小值.(2)曲线方程为y=x3-3x,点A(0,16)不在曲线上.设切点为M(x0,y0),则点M的坐标满足y0=x03-3x0.因f′(x0)=3(x02-1),故切线的方程为y-y0=3(x02-1)(x-x0).注意到点A(0,16)在切线上,有16-(x03-3x0)=3(x02-1)(0-x0),化简得x03=-8,解得x0=-2.所以切点为M(-2,-2),切线方程为9x-y+16=0.点评:本题考查函数和函数极值的概念,考查运用导数研究函数性质和求曲线切线的方法,以及分析和解决问题的能力.

收藏

分享

举报
下载此文档