)∵AB=AC,AD=BCР∴∠=∠, = ;Р(2)∵AB=AC,BD=DCР∴∠=∠, = ;Р(3)∵AB=AC,AD平分∠BACР∴= , = Р(让学生再次理解和运用等腰三角形的“三线合一”性质,以填空的形式及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力。)Р等腰三角形的性质的应用,是这节课的又一重点,本环节就是通过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心。Р(五)心得体会(4′)Р这节课我们主要研究了什么内容?你有哪些收获?Р请用“通过今天这堂课的研究,我明白了( ),我的收货与感受有( ),我还有疑惑之处是( )”的模式来总结、评价这堂课的学习。Р(让学生按上述的模式进行小结,通过对本节课的回顾,增强学生对等腰三角形的理解和对称图形的理解,培养学生Р“学习——总结——学习——反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。)Р(六)练习与作业(1′)Р1、略(详见课件);Р2、教科书习题13.3第1、4、6题;Р3、教科书第77页练习题1、2、3。Р五、设计思想:Р现代数学教学观念要求学生从“学会”向“会学”转变。所以本节在教学方法的设计上,把重点放在了逐步展示知识的形成过程上,先让学生通过剪纸来认识等腰三角形;再通过折纸、猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证,在教学设计中遵循由个别形象到一般抽象、由感性到理性的认知规律,使学生的思维有形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,真正实现学生为主体的教学宗旨。在教学设计中还突出了三个注重:1、注重让学生参与知识的形成过程,体现应用数学知识解决问题的乐趣;2、注重师生间、学生间的互动协作,共同提高;3、注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。