顺势利导,提出问题,紧扣了中心。Р2、由于实现了教师角色的转变,教法的创新,师生平等,关系融洽,气氛活跃,课堂民主,学生积极参与,在他们心底涌现了一股浓浓的学习欲望.Р3、面向全体学生,以人为本的教育理念落实到位,主体性得到充分体现.由于实现了学生角色的转变,学法的创新,整节课几乎都是学生自主实验、自主Р探索、自主完成由形到数的转化,学生的主动性及合作精神都体现出来了。教师只是作为他们的一分子参与研究,起组织、引导的作用.Р4、通过动手实验,并经推理论证,学生取得了勾股定理的新证法研究成果,一些新思路延伸到课外研究。Р5、研究成果不仅极大地丰富了学生对勾股定理的证明的认识,而且学生从中获得了利用已知探求未知数学知识的能力和方法,创新素质得到了培养和提高,这对学生今后的学习和将来的发展是大有裨益的。Р【教学评析】Р这节课主要采用讲、看、思、问、做等多种教学手段,通过激趣、质疑、实验、活动、交流等环节,围绕如何培养学生的创新意识、创新精神和创新能力,进行了很有价值的探索。Р本节课的教学活动分以下几个阶段进行:第一阶段是教师讲述“折尺的学问”的故事引入新课,以激发兴趣,鼓励质疑,意在培养学生的探究意识。———交流收获,,第二阶段是通过计算猜测、实验探究直角三角形三边之间的关系,学生总结勾股定理的证明方法和步骤。第三阶段是拼图验证再发现的结论。此时,学生的兴趣大增,利用学具独立或分组进行拼图实验。更加强了学生的创新思维、创新技能、创新情感和创新人格的培养。第四阶段是随堂训练掌握定理的基本应用。第五阶段是归纳小结,教师在充分肯定学生取得成绩的同时,再次引导学生将研究延伸到课外。Р总之,本节课之所以取得令人满意的教学效果,是因为教师树立了新的教育观念,转变了教师角色,将以育人为本的理念落到实处;师生平等,课堂民主;教法创新,精心设计和准备,科学的组织和安排,合理使用了多媒体教具和学具。