的学习中定义了单调性,并且在学习幂指对及三角函数时, 能够借助于函数图象特征和单调性的定义来研究函数的单调性. 那为什么还要用导数研究函数的单调性?能不能用导数研究函数的单调性?怎样用导数研究函数的单调性?循着这样的思路,整个教学过程,从创设情境—实例验证—揭示本质—强化应用—回顾反思,五个方面入手,层层递进,螺旋上升. 关注生活自然导入本课的难点是引导学生发现导数与函数单调性之间的联系,而这两个概念都是非常抽象的,学生很难直接感知,所以在引入阶段,利用生活中的常见问题汽车灯光的指向与上下坡之间的联系,第一次抽象:引导学生发现道路可以抽象成函数的图象,灯光可以抽象为切线,这样问题就转化为切线斜率正负与曲线上升下降的联系;适当建系后,第二次抽象:将曲线看做是函数 y=f(x)上的一段图象, 那么切线斜率即为函数在该点处的导数,顺势猜想结论,感知导数正负与函数单调性之间的联系,从而轻松高效引入课题,成功激发学生的求知欲,也体现了“生活中处处有数学”的教学理念. 关注探究合作生成前面已经猜想出结论,但是该结论是否正确,还有待检验,学生首先想到的就是验证已经学过的常见函数,从而深化对所得结论的理解. 再从“形”回到“数”,进一步引导学生经历从特殊到一般的过程,抓住导数和单调性的定义之间的联系来提炼一般性的结论,由学生自主探究、分组展示,互相点评,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体. 关注应用数形结合在典例演练,强化应用的过程中,例题 1由“形”到“数”,规范了用导数研究单调性的书写,加深了对结论的理解;例题 2在了解函数的性质基础上,要求学生画出三次函数的大致图象,经历由“数”到“形”的过程,并对导函数图象与原函数图象进行对比、深化理解,突显了利用导数研究函数单调性的优越性;例题 3 由三角函数图象很快能得出结论,但在变式题中证明函数单调性又回到“数”,