应用难点:将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题。解直角三角形在实际问题中的应用一般步骤:1、将实际问题抽象为数学问题。画出平面图形,转化为解直角三角形的问题。2、根据问题中的条件,选用合适的锐角三角函数解直角三角形。3、得数学问题的答案。4、得实际问题的答案。铅直线水平线视线视线仰角俯角读一读在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.仰角和俯角例4:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,a=30°,β=60°Rt△ABC中,a=30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.ABCDαβ仰角水平线俯角仰角与俯角解:如图,a=30°,β=60°,AD=120.答:这栋楼高约为277.1mABCDαβ【例1】如图,直升飞机在跨江大桥AB的上方P点处,此时飞机离地面的高度PO=450米,且A、B、O三点在一条直线上,测得大桥两端的俯角分别为α=30°,β=45°,求大桥的长AB.450米合作与探究解:由题意得,在Rt△PAO与Rt△PBO中答:大桥的长AB为βαPABO合作与探究变题1:如图,直升飞机在长400米的跨江大桥AB的上方P点处,且A、B、O三点在一条直线上,在大桥的两端测得飞机的仰角分别为30°和45°,求飞机的高度PO.ABO30°45°400米P45°30°OBA200米合作与探究例2:如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO.LUDP