全文预览

探寻勾股数

上传者:qnrdwb |  格式:ppt  |  页数:8 |  大小:1653KB

文档介绍
数学活动探寻勾股数商高定理商高是公元前十一世纪的西周人.在中国古代的数学著作《周髀算经》中记录着商高同周公的一段对话. 商高说:“…故折矩,勾广三,股修四,经隅五.”意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成“勾三股四弦五”.由于勾股定理的内容最早见于商高的话中,所以在我国人们就把这个定理叫作“商高定理”. 关于勾股定理的发现,《周髀算经》上说:“故禹之所以治天下者,此数之所由生也”.“此数”指的是“勾三股四弦五”,这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的.勾股趣事毕达哥拉斯定理“勾股定理”在国外,尤其在西方被称为“毕达哥拉斯定理”或“百牛定理”. 毕达哥拉斯有一次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言.毕达哥拉斯却凝视脚下这些排列规则、美丽的方形磁砖,这位善于观察和理解的数学家不只是欣赏磁砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和.他很好奇,于是再以两块磁砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面,就这样毕达哥拉斯也发现了勾股定理.毕达哥拉斯(Pythagoras,前572~前497),西方理性数学创始人,古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年.勾股趣事活动一:构造勾股数。活动二:仔细观察这些勾股数,你有什么样的发现?

收藏

分享

举报
下载此文档