用:1、证明不等式2、证明等式内容:本课主要学习综合法与分析法。通过两个引例出发,引入综合法与分析法,通过对比掌握它们证题的特点,并总结出它们之间的区别与联系,为在实际问题中分析问题寻找解题方法做好铺垫.重点:会用综合法和分析法证明问题;了解综合法与分析法的思考过程.难点:根据问题的特点,结合综合法与分析法的思考过程、特点,选择适当的证明方法.本课选用了两个例题。例题设置难易适度,每个例题后有针对性的练习,便于学生巩固和掌握,且第一个例题与变式训练分别用分析法和综合法来证明,让学生真正体会两种方法的优点与作用,另外,第二个例题可以用综合法,也可以用分析法,从而锻炼学生灵活应用方法解决问题的能力.采用一讲一练针对性讲解的方式,重点理解综合法与分析法的应用。通过观看视频,大家一起讨论一下我们应该如何测的恒星之间的距离呢?如何测的恒星之间的距离复习合情推理得到的结论是不可靠的,需要证明.数学中证明的方法有哪些呢?证法2:由证法2是从已经成立的事实出发,经过正确推理,得到要证的结论.------综合法分析:从待证不等式不易发现证明的出发点,因此我们直接从待证不等式出发,分析其成立的充分条件.在本例中,由于我们很难想到从“21<25”入手,所以用综合法证明比较困难.以上采用的证明方法就是分析法.利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论.则综合法用框图表示为:…综合法是由一个个推理组成的.特点:由因索果综合法概念从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件为止,这种证明的方法叫做分析法.这个明显成立的条件可以是:已知条件、定理、定义、公理等则分析法用框图表示为:分析法概念