,使AB=AB,∠A=∠A,∠B=∠B结论:两角及夹边对应相等的两个三角形全等(ASA).′′′′′′′探索?观察:△ABC与△ABC全等吗?怎么验证?画法:1.画AB=AB;2.在AB的同旁画∠DAB=∠A,∠EBA=∠B,AD、BE交于点C′′′′′′′′′ACBA′EDCB′′′思考:这两个三角形全等是满足哪三个条件?′′′′′如何用符号语言来表达呢?在△ABC与△ABC中∠A=∠AAB=AB∴△ABC≌△A’B’C’(ASA)ACBA′CB′′′′′′′′∠B=∠B′两角及夹边对应相等的两个三角形全等(ASA).在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC和△DEF全等吗?为什么?ACBEDF探索分析:能否转化为ASA?证明:∵∠A=∠D,∠B=∠E(已知)∴∠C=∠F(三角形内角和定理)∠B=∠E在△ABC和△DEF中BC=EF∠C=∠F∴△ABC≌△DEF(ASA)你能从上题中得到什么结论?两角及一角的对边对应相等的两个三角形全等(AAS)。如何用符号语言来表达呢?证明:在△ABC与△ABC中∠A=∠A∴△ABC≌△A’B’C’(AAS)ACBA′CB′′′′′′∠B=∠B′′′BC=BC两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”(ASA)(AAS)归纳例1、如图,AB=AC,∠B=∠C,那么△ABE和△ACD全等吗?为什么?证明:在△ABE与△ACD中∠B=∠C(已知)AB=AC(已知)∠A=∠A(公共角)∴△ABE≌△ACD(ASA)AEDCB例2.如图,海岸上有A、B两个观测点,点B在点A的正东方,海岛C在观测点A的正北方,海岛D在观测点B的正北方,从观测点A看C,D的视角∠CAD与从观测点B看海岛C,D的视角∠CBD相等,那么点