全文预览

全等三角形的判定ASA专题课件

上传者:菩提 |  格式:ppt  |  页数:24 |  大小:550KB

文档介绍
称这种位置关系为两角夹边我们称这种位置关系为两角及其中一角的对边。观察下图中的△ABC,画一个△ABC,使AB=AB,∠A=∠A,∠B=∠B结论:两角及夹边对应相等的两个三角形全等(ASA).′′′′′′′探索?观察:△ABC与△ABC全等吗?怎么验证?画法:1.画AB=AB;2.在AB的同旁画∠DAB=∠A,∠EBA=∠B,AD、BE交于点C′′′′′′′′′ACBA′EDCB′′′思考:这两个三角形全等是满足哪三个条件?′′′′′如何用符号语言来表达呢?证明:在△ABC与△ABC中∠A=∠AAB=AB∴△ABC≌△A’B’C’(ASA)ACBA′CB′′′′′′′′∠B=∠B′两角及夹边对应相等的两个三角形全等(ASA).在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC和△DEF全等吗?为什么?ACBEDF探索解:全等∵∠A=∠D,∠B=∠E(已知)∴∠C=∠F(三角形内角和定理)∠B=∠E在△ABC和△DEF中BC=EF∠C=∠F∴△ABC≌△DEF(ASA)你能从上题中得到什么结论?两角及一角的对边对应相等的两个三角形全等(AAS)。如何用符号语言来表达呢?证明:在△ABC与△ABC中∠A=∠A∴△ABC≌△A’B’C’(AAS)ACBA′CB′′′′′′∠B=∠B′′′BC=BC两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”(ASA)(AAS)归纳下列条件能否判定△ABC≌△DEF.(1)∠A=∠EAB=EF∠B=∠D(2)∠A=∠DAB=DE∠B=∠E试一试请先画图试试看如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?解决玻璃问题AB

收藏

分享

举报
下载此文档