吗?ABCABCA′DE尺规作图,探究边角边的判定方法现象:两个三角形放在一起能完全重合.说明:这两个三角形全等.画法:(1)画∠DA′E=∠A;(2)在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′.B′C′几何语言:在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(SAS).尺规作图,探究边角边的判定方法归纳概括“SAS”判定方法:两边和它们的夹角分别相等的两个三角形全等(可简写成“边角边”或“SAS”).AB=A′B′,∠A=∠A′,AC=A′C′,课堂练习下列图形中有没有全等三角形,并说明全等的理由.甲8cm9cm丙8cm9cm8cm9cm乙30°30°30°课堂练习图甲与图丙全等,依据就是“SAS”,而图乙中30°的角不是已知两边的夹角,所以不与另外两个三角形全等.甲8cm9cm丙8cm9cm8cm9cm乙30°30°30°利用今天所学“边角边”知识,带黑色的那块.因为它完整地保留了两边及其夹角,一个三角形两条边的长度和夹角的大小确定了,这个三角形的形状、大小就确定下来了.应用“SAS”判定方法,解决简单实际问题问题2 某同学不小心把一块三角形的玻璃从两个顶点处打碎成两块(如图),现要到玻璃店去配一块完全一样的玻璃.请问如果只准带一块碎片,应该带哪一块去,能试着说明理由吗?例题讲解,学会运用例如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED,那么量出DE的长就是A,B的距离.为什么?ABCDE12例题讲解,学会运用AC=DC(已知),∠1=∠2(对顶角相等),BC=EC(已知),证明:在△ABC和△DEC中,ABCDE12∴△ABC≌△DEC(SAS).∴ AB=DE(全等三角形的对应边相等).