判定定理及运用.(重点)2.三角形的内切圆和内心的概念及性质.(难点)学习目标砂轮上打磨工件时飞出的火星下图中让你感受到了直线与圆的哪种位置关系?如何判断一条直线是否为切线呢?导入新课情境引入讲授新课圆的切线的判定一问题1如图,OA是⊙O的半径,经过OA的外端点A,作一条直线l⊥OA,圆心O到直线l的距离是多少?直线l和⊙O有怎样的位置关系?合作探究ll圆心O到直线l的距离等于半径OA.由圆的切线定义可知直线l与圆O相切.ll过半径外端且垂直于半径的直线是圆的切线.OA为⊙O的半径BC⊥OA于ABC为⊙O的切线OABC切线的判定定理应用格式O要点归纳下列各直线是不是圆的切线?如果不是,请说明为什么?O.AO.ABAO(1)(2)(3)(1)不是,因为没有垂直.(2),(3)不是,因为没有经过半径的外端点A.在此定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线.注意判一判判断一条直线是一个圆的切线有三个方法:1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.lAlOlrd要点归纳用三角尺过圆上一点画圆的切线.做一做(2)过点P沿着三角尺的另一条直角边画直线l,则l就是所要画的切线.如图所示.如下图所示,已知⊙O上一点P,过点P画⊙O的切线.画法:(1)连接OP,将三角尺的直角顶点放在点P处,并使一直角边与半径OP重合;为什么画出来的直线l是⊙O的切线呢?例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.OBAC证明:连接OC.∵OA=OB,CA=CB,∴OC是等腰△OAB底边AB上的中线. ∴AB⊥OC.∵OC是⊙O的半径,∴AB是⊙O的切线.典例精析