全文预览

坐标系与参数方程(PPT课件)

上传者:非学无以广才 |  格式:ppt  |  页数:29 |  大小:136KB

文档介绍
会研究曲线性质的一般方法;对有兴趣的学生可鼓励自主探究,并通过“思考”、“探究”、“探究与发现”、“阅读与思考”等栏目,以及在条件许可下运用信息技术提供发展空间。另外,根据问题的难易度及学生的认知水平,只要求掌握椭圆、抛物线的定义,对双曲线只要求“了解双曲线定义”。Р教学建议:Р突出基本思想。? 解析几何的基本思想是曲线与方程、方程与曲线的关系;突出用方程研究曲线,用代数方法研究曲线的性质。由于教材是先通过特殊曲线,从感性上认识曲线方程的意义,再建立一般的曲线方程的概念,因此在建立椭圆、双曲线、抛物线的方程时,可不必涉及方程的解与曲线上的点的对应关系的两个方面,重点放在“如何建立曲线方程”及“怎样用曲线方程研究曲线的几何性质”上。曲线方程的概念比较抽象,教学时只需通过已经学习过的几种曲线的方程与曲线的关系进行概括,并通过具体问题让学生适当感受,并在应用中加深体会,不要在定义的两个方面作过多研究。本章的数学教育价值是“数形结合”的数学思想方法,《标准》中多次提到“让学生体会和感受数形结合的思想”,应在本章中得到较好的落实。Р教学建议:Р重视引入过程。在椭圆的学习过程中,教材从圆出发,给出“探究”栏目,通过把细绳的两端分开,让学生观察轨迹的形状,建立与已有知识的联系与区别;由画图的过程,探究形成轨迹的动点满足的几何条件,展现曲线的典型几何特征;在此基础上,给出具有这种典型几何特征的轨迹的正式名称:椭圆;通过观察椭圆的形状,引导学生建立适当的直角坐标系,用点的坐标表示距离,建立椭圆的标准方程。教材意在突出知识的发生、发展过程,引导学生自主学习探索,既动手又动脑,获得体验;在感性认识的基础上,把具体直观的图形“椭圆”抽象形式化(代数化)为“方程”,形成理性认识。其他两种圆锥曲线:双曲线与抛物线,虽然它们的几何特征与椭圆不同,但其引入过程以及标准方程的建立过程,都可与椭圆相类比展开。

收藏

分享

举报
下载此文档