探究点三:含30°锐角的直角三角形性质的应用Р 如图,某船于上午11时30分在A处观测到海岛B在北偏东60°方向;该船以每小时10海里的速度向东航行到C处,观测到海岛B在北偏东30°方向;航行到D处,观测到海岛B在北偏西30°方向;当船到达C处时恰与海岛B相距20海里.请你确定轮船到达C处和D处的时间.Р解析:根据题意得出∠BAC,∠BCD,∠BDA的度数,根据直角三角形的性质求出BC、AC、CD的长度.根据速度、时间、路程关系式求出时间.Р解:由题意得∠BCD=90°-30°=60°,∠BDC=90°-30°=60°.∴∠BCD=∠BDC=60°,∴△BCD为等边三角形.在△ABD中,∵∠BAD=90°-60°=30°,∠BDC=60°,∴∠ABD=90°,即△ABD为直角三角形,∴∠ABC=30°.∵BC=20海里,∴CD=BD=20海里.又∵BD=AD,∴AD=40海里.∴AC=AD-CD=20(海里).∵船的速度为每小时10海里,因此轮船从A处到C处的时间为=2(h),从A处到D处的时间为=4(h).∴轮船到达C处的时间为13时30分,到达D处的时间为15时30分.Р方法总结:方位角是遵循“上北下南左西右东”的原则,弄清楚方位角是解决这类题的关键,再利用含30°角的直角三角形的性质解题.Р变式训练:见《学练优》本课时练习“课后巩固提升”第8题Р三、板书设计Р1.含30°锐角的直角三角形的性质Р(1)在直角三角形中,30度的角所对的边等于斜边的一半;Р(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.Р2.含30°锐角的直角三角形的性质的应用.Р在教学中,应该要注意强调这两个性质都是在直角三角形中得到的,如果是一般三角形是不能得到的;两边的二倍关系是斜边和直角边之间的关系,不是两直角边的关系,这在教学中要注意强调,这是学生常犯的错误