题是真命题,我们把它称为平行线的性质定理一,这样就可以把它作为今后证明的依据.两条平行线被第三条直线所截,同旁内角互补.请一位同学上黑板来给大家板演,其他同学写在练习本上.已知,如图,直线a∥b,∠1和∠2是直线a、b被直线c截出的同旁内角.求证:∠1+∠2=180°.证明:∵a∥b(已知)∴∠3=∠2(两直线平行,同位角相等)∵∠1+∠3=180°(1平角=180°)∴∠1+∠2=180°(等量代换)思考:还有其他方法吗?法二证明:∵a∥b(已知)∴∠3=∠2(两直线平行,内错角相等)∵∠1+∠3=180°(1平角=180°)∴∠1+∠2=180°(等量代换)通过推理的过程得证这个命题“两条平行线被第三条直线所截,同旁内角互补”是真命题,我们把它称为平行线的性质定理二,以后可以直接应用它来证明其他的命题.3.原命题与逆命题观察“同位角相等,两直线平行”、“两直线平行,同位角相等”这两个命题,你发现什么?归纳:这两个命题中,第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题.思考:如果原命题是真命题,它的逆命题一定是真命题吗?举例说明.如“对顶角相等”是真命题,而“相等的角是对顶角”是假名题.引导学生主动发现:一对互逆命题的真假性不一定相同.如果一个定理的逆命题是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理称为另一个定理的逆定理.如“同位角相等,两直线平行”、“两直线平行,同位角相等”这两个定理就是一对互逆定理.三、课堂练习四、小结1.平行线的性质:公理:两直线平行,同位角相等.定理1:两直线平行,内错角相等.定理2:两直线平行,同旁内角互补.2.原命题与逆命题五、作业课本习题