全文预览

九年级数学上册 24.4 弧长与扇形面积第一课时导学案 新人教版

上传者:upcfxx |  格式:doc  |  页数:3 |  大小:123KB

文档介绍
______________________________________________________________________________请同学们结合圆心面积S=R2的公式,独立完成下题:1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.……5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.因此:在半径为R的圆中,圆心角n°的扇形______________________︵︵【知识运用】如图,已知扇形AOB的半径为10,∠AOB=60°,求AB的长(结果精确到0.1)和扇形AOB的面积结果精确到0.1)提示:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足三、随堂检测1.已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A.3B.4C.5D.62.如图1所示,把边长为2的正方形ABCD的一边放在定直线L上,按顺时针方向绕点D旋转到如图的位置,则点B运动到点B′所经过的路线长度为()A.1B.C.D.(1)(2)(3)3.如图2所示,实数部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()A.12mB.18mC.20mD.24m四:小结。本节课应掌握:1.n°的圆心角所对的弧长L=____________2.扇形的概念.3.圆心角为n°的扇形面积是S扇形=__________4.运用以上内容,解决具体问题.︵︶︵五、课后巩固已知如图所示,AB所在圆的半径为R,AB的长为R,⊙O′和OA、OB分别相切于点C、E,且与⊙O内切于点D,求⊙O′的周长.

收藏

分享

举报
下载此文档