in260°+cos260°=1B.sin30°+cos30°=1C.sin35°=cos55°D.tan45°>sin45°3.计算2sin30°-2cos60°+tan45°的结果是().A.2B.C.D.14.已知∠A为锐角,且cosA≤,那么()A.0°<∠A≤60°B.60°≤∠A<90°C.0°<∠A≤30°D.30°≤∠A<90°5.在△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定6.如图Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=3,AC=4,设∠BCD=a,则tana的值为().A.B.C.D.7.当锐角a>60°时,cosa的值().A.小于B.大于C.大于D.大于18.在△ABC中,三边之比为a:b:c=1::2,则sinA+tanA等于().A.9.已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC,若梯形的高是,则∠CAB等于()A.30°B.60°C.45°D.以上都不对10.sin272°+sin218°的值是().A.1B.0C.D.11.若(tanA-3)2+│2cosB-│=0,则△ABC().A.是直角三角形B.是等边三角形C.是含有60°的任意三角形D.是顶角为钝角的等腰三角形三、填空题.12.设α、β均为锐角,且sinα-cosβ=0,则α+β=_______.13.的值是_______.14.已知,等腰△ABC的腰长为4,底为30°,则底边上的高为______,周长为______.15.在Rt△ABC中,∠C=90°,已知tanB=,则cosA=________.五、课堂小结:要牢记下表:30°45°60°siaAcosAtanA六、作业设置:课本第85页习题28.1复习巩固第3题七、自我反思:本节课我的收获