数形结合的重要思想。所以在本单元学习中,学生要初步形成用代数方法解决几何问题的能力,体会数形结合的思想,其核心可以由以下知识结构图显现出来:3.学习者特征分析:已有一次函数知识作为基础;刚刚结束了立体几何初步的学习,现在学习直线与方程可以说是对点、直线的再认识、再深化;该课程是高一课程,学生习惯于直觉思维,感性认识要多一点,或者说学生正在初步接触和进行逻辑思维,处在由直观到精确、由感性到理性的认知水平的转化和提高过程中。故从这种意义看来,本单元课程不失为一个思维提升训练非常恰当的载体。4.重点难点分析:本单元目的是在解析几何视角下完成直线上的点与方程的解的联系,直线上所有点与方程的所有解之间的联系,从而建立直线的方程,把直线问题转化为代数问题;处理代数问题;分析代数结果得几何含义,最终解决几何问题。由此说本单元的重点是直线的倾斜角与斜率、直线的方程、直线的交点坐标与距离公式,重点方法和思想是形成用代数方法解决几何问题的能力,体会数形结合的思想。5.教材对比分析:现行教材都突出解析几何中坐标法的应用,强调数形结合思想在本章中的渗透,授课内容也都基本相同,但是有各自的特点,下面就人教A版和苏教版进行比较,如下图:不管顺序怎么不同,各种教材都是根据学生的认知水平、遵循学生的认识规律的,我们不必过于拘泥于某种教材,而是根据自己学生的特点、认知水平,选择合适的教学手段和方法。6.教学方式分析:可以灵活采用各种教学方法,我们学校主要采用五环节教学法,即师生共同探宄、学生独立思考、小组合作交流、学生精彩展示和老师精彩点评五个环节。三、?教学流程设计四、?典型案例设计(略)五、?反思与改进1.重视解析几何在高中数学中的指导性地位,要不失时机地渗透、巩固,加深学生对其重要性的认识。2.把握教学中的“度”,最好不要在细枝末叶处“折腾”。3.进行单元教学设计可大可小,要用整体把握的观点指导教学。