的二次项系数相同,则它们的抛物线形状相同.由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移. 3.通过描点画图、图像平移,理解并明确解析式的特征与图像的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中构画出它的图像的基本特征; 4.在熟悉函数图像的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图像来判别二次函数的系数a、b、c、△以及由系数组成的代数式的符号等. 三、要充分利用抛物线“顶点”的作用 1.要能准确灵活地求出“顶点”.形如y=a(x+h)2+k→顶点(-h,k),对于其他形式的二次函数,我们可化为顶点式而求出顶点. 2.理解顶点、对称轴、函数最值三者的关系.若顶点为(-h,k),则对称轴为x=-h,y最大(小)值=k;反之,若对称轴为x=m,y最值=n,则顶点为(m,n);理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果. 3.利用顶点画草图.在大多数情况下,我们可以根据抛物线顶点,结合开口方向,画出抛物线的大致图像(即草图),能帮助我们分析、解决问题就行了. 四、理解掌握抛物线与坐标轴交点的求法一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标.如果方程无实数根,则说明抛物线与x轴无交点. 从以上求交点的过程可以看出,求交点的实质就是解方程.联系方程的根的判别式,利用根的判别式的值来判定抛物线与x轴的交点个数. 五、灵活应用待定系数法求二次函数的解析式用待定系数法求二次函数的解析式是我们求解析式时最常规有效的方法,求解析式时往往可选择多种方法,如能综合利用二次函数的图像与性质,灵活应用数形结合的思想,不仅可以简化计算,而且对进一步理解二次函数的本质及数与形的关系大有裨益.