系式,若折旧率以10%计算,那么两年后的该机器价值为多少?18.(8分)已知抛物线的顶点在轴上,求这个函数的解析式及其顶点坐标。19.(8分)若二次函数的图象与直线没有交点,求的取值范围。20.(10分)如图,抛物线经过点A(1,0),与y轴交于点B,与x轴交于点C。⑴求抛物线的解析式?⑵求△ABC的面积?(3)求根据图象回答:当取何值时,>021.(10分)如图,抛物线与x轴交于A、B两点,与y轴交于C点,且A(一1,0).⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.22.(12分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克。(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多。23.(12分)某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示)。若已知OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米。(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。24.(14分)二次函数的图象与x轴从左到右两个交点依次为A、B,与y轴交于点C,(1)求A、B、C三点的坐标;(2)如果P(x,y)是抛物线AC之间的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)是否存在这样的点P,使得PO=PA,若存在,求出点P的坐标;若不存在,说明理由。