全文预览

数学核心素养之运算能力

上传者:学习一点 |  格式:doc  |  页数:4 |  大小:31KB

文档介绍
数法确定一次函数的表达式”“会用配方法将数字系数的二次函数的不等式化为顶点式,并能由此得到二次函数图象的定点坐标Р”等直接进行运算的内容;还包括与运算密切相关的内容,如“能结合图象对简单实际问题中的函数关系进行分析”“用适当的函数表示法刻画简单实际问题中变量之间的关系”“结合对函数关系的分析,能对变量的变化情况进行初步讨论”“根据一次函数的图象和表达式探索并理解图象的变化情况”“能根据已知条件确定反比例函数的表达式”“根据图象和表达式探索反比例函数图象的变化情况”“指导给定不共线三点的坐标可以确定一个二次函数。”Р由变量到常量,表明运算思维产生了新的飞跃,运算能力也发展到了一个新的高度。Р4、由单向思维到逆向、多向思维Р逆向思维是数学学习的一个特点。在第二学段,《课程标准》规定“在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。”在第三学段,又增加了乘方与开方的互逆关系。到高中阶段,更有指数与对数、微分与积分等混个小。运算的互逆关系,是逆向思维的重要表现形式之一。Р运算也是一种推理,在实施运算分析和解决问题的过程中,“由因导果”和“执果索因”的推理模式也是经常要用到的,表现为有效探索运算的条件与结论,已知与未知的相互联系及相互转化,思维方式是互逆的,更是相辅相成的。Р在实施运算的过程中,还会遇到多因素的情况,各个因素相互联系、相互制约、有相辅相成,更加需要不同的思维方向、不同的解题思路和不同的解题方法,通过你叫,嫁衣择优选用。这是运算思维达到一个新高度的重要标志,是运算能力的培养与发展的高级阶段。Р由于思维定势的消极作用,逆向思维和多向思维的难度较大,在实施运算的过程中,对分析运算条件,探究运算方向,选择运算方法,设计运算程序等各个环节都要引导学生进行周密的思考,力求使运算符合算理,达到正确熟练、灵活多样、合理简洁,实现运算思维的优化及运算能力的逐步提高。

收藏

分享

举报
下载此文档