全文预览

新人教版小学数学六年级下册单元备课主讲稿 全册

上传者:叶子黄了 |  格式:doc  |  页数:16 |  大小:73KB

文档介绍
稿一、教学内容六年级第五单元数学广角二、教学目标1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。2.通过“抽屉原理”的灵活应用感受数学的魅力。三、单元教学重难点1、经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题“模型化”。2、理解并掌握假设法的核心思路,即把物体尽量多地平均分给各个抽屉,看每个抽屉能分到多少,剩下的物体不管放到哪个抽屉,总有一个抽屉比平均分的数量多1,并能用“有余数除法”的数学形式表示出来。3、引导学生把具体问题转化为“抽屉原理”。四、单元教材分析这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。在数学问题中有一类与“存在性”有关的问题。例如,任意13人中,至少有两人的出生月份相同。任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本单元用直观的方式,介绍了“抽屉原理”的两种形式。例1描述的是最简单的“抽屉原理”:把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。例2描述了“抽屉原理”更为一般的形式:把多于kn个物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。如果问题所讨论的对象有无限多个,“抽屉原理”还有另一种表述:把无限多个物体任意分放进n个空抽屉,那么一定有一个抽屉中放进了无限多个物体。这类问题对于小学生而言较难理解,因此教材中没有涉及到。例3是“抽屉原理”的具体应用。“做一做

收藏

分享

举报
下载此文档