全文预览

“曲线与方程”教学设计 全国高中青年数学教师参赛优秀教案

上传者:幸福人生 |  格式:doc  |  页数:4 |  大小:21KB

文档介绍
法论上的一次飞跃。Р由于曲线和方程的概念是解析几何中最基本的内容,因而学生用解析法研究几何图形的性质时,只有透彻理解曲线和方程的意义,才能算是寻得了解析几何学习的入门之径。求曲线与方程的问题,也贯穿了这一章的始终,所以应该认识到,本节内容是解析几何的重点内容之一。本节中提出的曲线与方程的概念,它既是对以前学过的函数及其图象、直线的方程、圆的方程等数学知识的深化,又是学习圆锥曲线的理论基础,它贯穿于研究圆锥曲线的全过程,根据曲线与方程的对应关系,通过研究方程来研究曲线的几何性质,是几何的研究实现了代数化。数与形的有机结合,在本章中得到了充分体现。Р●教学目标:Р1.通过感受曲线的方程和方程的曲线这一概念的生成过程,初步理解曲线的方程和方程的曲线的概念。Р2.理解曲线的方程与方程的曲线的概念和集合相等的关系、渗透转化与化归的思想与数形结合的思想。Р3.培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神。Р●教学重点Р理解曲线的方程和方程的曲线的概念。Р●教学难点Р对曲线与方程对应关系的理解。Р●学情分析Р新课标强调返璞归真,努力揭示数学概念、结论的发展背景,过程和本质,揭示人们探索真理的道路。本节课在学生学习了集合和直线的方程、圆的方程知识的基础上,使学生理解数学概念、结论产生的背景和逐步形成的过程,体会孕育在其中的思想,把数学的学术形态转化为学生易于接受的教育形态。为突破曲线的方程与方程的曲线定义的难点,选择学生认知结构中与新知最邻近“直线的方程”,“圆的方程”入手,以集合相等,辅助理解“曲线的方程”与“方程的曲线”,进一步强化了概念理解的深刻性。无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。Р Р教学过程设计Р Р百度搜索“就爱阅读”,专业资料,生活学习,,您的在线图书馆

收藏

分享

举报
下载此文档