2,y=3代入①,得z=5.所以原方程组的解为Р(2)①-②,得x+2y=11.④Р①+③,得5x+2y=9.⑤Р④与⑤组成方程组Р解得Р把x=-,y=代入②,得z=-.Р所以原方程组的解是Р方法总结:解三元一次方程组的难点在于根据方程组中方程的系数特点选择较简便的方法.(1)一般地,若某一方程的系数比较简单,可选用代入法;Р(2)若方程组三个方程中某个未知数的系数的绝对值相等或成倍数时,可选用加减消元法,但要注意必须消去同一个未知数,否则所得的两个新方程虽然都含两个未知数,但由它们组成的方程组仍含三个未知数,并未达到消元的目的.Р探究点三:三元一次方程组的应用Р 某汽车在相距70km的甲、乙两地往返行驶,因途中有一坡度均匀的小山.该汽车从甲地到乙地需要2.5h,而从乙地到甲地需要2.3h.假设汽车在平路、上坡路、下坡路的时速分别是30km、20km、40km,则从甲地到乙地的过程中,上坡路、平路、下坡路的长度各是多少?Р解析:题中有三个等量关系:①上坡路长度+平路长度+下坡路长度=70km;②从甲地到乙地过程中,上坡时间+平路时间+下坡时间=2.5h;③从乙地到甲地的过程中,上坡时间+平路时间+下坡时间=2.3h.Р解:设从甲地到乙地的过程中,上坡路、平路、下坡路的长度分别是xkm,ykm和zkm.Р由题意,得解得Р答:从甲地到乙地的过程中,上坡路是12km,平路是54km,下坡路是4km.Р方法总结:解此题的关键是理解汽车在往返行驶的过程中,如果从甲地到乙地是上坡路段,那么从乙地到甲地时就变成了下坡路段.Р三、板书设计Р三元一次方程组Р通过对二元一次方程组的类比学习,让学生感受把新知转化为已知、把不会的问题转化为学过的问题、把难度大的问题转化为难度较小的问题这一化归思想,感受数学知识之间的密切联系;增强学生的数学应用意识,初步培养学生建立数学模型解决问题的良好思维习惯.