(1)的拓展;题(3)能体现数学来源于实际又应用于实际的思想.Р(约5分钟)Р已知a、b是非零向量,则|a+b|与|a|+|b|有什么关系?Р设计说明Р设置这一研讨题可以将本节课与上节课的知识联系起来,并进一步渗透分类的思想.Р(约4分钟)Р让学生自主回顾和归纳本节的内容.Р设计说明Р1.向量加法的意义;2.理解实际问题数学化的思想,增强数学的应用意识;3.理解分类讨论等数学思想,培养类比、迁移等能力.Р学情预设Р要求学生不仅对知识体系进行归纳,还要对本节课中所体现的数学思想方法及数学能力进行总结,有一定的难度.Р(约1分钟)Р课本本节练习1,2,3,4.Р设计说明Р1.巩固所学的内容.2.对所学内容的检测、反馈与及时补充不足.Р本节课采用“探究——讨论”教学法.“探究——研讨”教学法是美国哈佛大学教育专家兰本达所倡导的.“探究——研讨”教学法把教学过程分为两个步骤:第一步骤是“探究”.我所设计的问题引入、概念形成及概念深化都是采用探究的方法,将有关材料有层次地提供给学生,让学生独立地支配它,进而探索、研究它.学生通过对这些“有结构”的材料进行探究,获得对向量加法的感性认识和形成各自对向量加法概念的了解.第二步骤是“研讨”,即在探究的基础上,组织学生研讨自己在探究中的发现,通过互相交流、启发、补充、争论,使学生对向量加法的认识从感性的认识上升到理性认识,获得一定水平层次的科学概念.这节课主要是教给学生“动手做,动脑想;多训练,勤钻研.”的研讨式学习方法.这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径和思考问题的方法.使学生真正成为教学的主体.也只有这样做,才能使学生Р“学”有新“思”,“思”有所“得”,“练”有所“获”.学生才会逐步感到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养“创新型”人才的需要.