即认为主销内倾角、主销后倾角及车轮外倾角均为零,而左、右转向节轴线重合且与主销轴线位于同一侧向垂直平面内,如图(3-2)所示[3]。Р图3-2 转向桥在制动和侧滑工况下的受力分析简图РFig.3-2 The force analysis of steering axleР(a)制动工况下的弯矩图和转矩图;(b)侧滑工况下的弯矩图Р3.2 非断开式转向从动桥前梁应力计算Р3.2.1 在制动情况下的前梁应力计算Р制动时前轮承受的制动力Pr和垂向力Z1传给前梁,使前梁承受转矩和弯矩。考虑到制动时汽车质量向前转向桥的转移,则前轮所承受的地面垂向反力为РZ1=G1/2=8200×1.5/2=6150N (3-4)Р式中:G1——汽车满载静止于水平路面时前桥给地面的载荷;Р ——汽车制动时对前桥的质量转移系数,对前桥和载货汽车的前桥可取1.4~1.7。Р前轮所承受的制动力为Р Pr=Z1 =6150×1.0=6150N (3-5)Р式中:——轮胎与路面的附着系数。Р由Z1和Pr对前梁引起的垂向弯矩Mv和水平方向弯矩Mh在两钢板弹簧座之间达最大值,分别为РMv=(Z1-gw)l2===1.73×106 NmmР(3-6)РMh=Prl2= Z1=6150×1.0×=2.03×106 Nmm (3-7)Р式中:l2——为轮胎中线至板簧座中线间的距离,mm;Р gw——车轮(包括轮毅、制动器等)的重力,N;Р B——前轮轮距,mm;РS——前轮上两板簧座中线间的距离,mm。Р制动力Pr还使前梁在主销孔至钢板弹簧座之间承受转矩T:РT=Prrr=6150×314=1.93×106 Nmm (3-8)Р式中:rr——轮胎的滚动半径。Р图3-2给出了前梁在汽车制动工况下的弯矩图及转矩图。Р前梁在钢板弹簧座附近危险断面处的弯曲应力w和扭转应力(单位均为MPa)分别为Рw===300MPa (3-9)