的横坐标。因此,抛物线与一元二次方程是有密切联系的。即:若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与轴的两个交点坐标分别是A(),B()x1,0x2,0xOABx1x2y探究2:抛物线与X轴的交点个数能不能用一元二次方程的知识来说明呢?b2-4ac>0b2-4ac=0b2-4ac<0OXY探究y=ax2+bx+c的图象和x轴交点方程ax2+bx+c=0的根b2-4ac函数的图象有两个交点方程有两个不相等的实数根b2-4ac>0只有一个交点方程有两个相等的实数根b2-4ac=0没有交点方程没有实数根b2-4ac<0xyo..xyoxyo结论2:抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:简单运用1.已知抛物线y=2x2+bx+8的顶点在x轴上,则b=。2.若二次函数y=(m-8)x2+2x+m2-64的图象过原点,则m=。±8-8二、基础训练3.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是( )A、3<x<3.23B、3.23<x<3.24C、3.24<x<3.25D、3.25<x<3.26x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09C二、基础训练4.已知抛物线y=x2-6x+a的顶点在x轴上,则a;若抛物线与x轴有两个交点,则a;若抛物线与坐标轴有两个公共点,则a;6.已知抛物线y=x2+px+q与x轴的两个交点为(-2,0),(3,0),则p=___,q=__5.已知抛物线y=x2-3x+a+1与x轴至少有一个交点,则a的范围是。三、拓展应用练习1.已知二次函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A、k<4 B、k≤4C、k<4且k≠3?D、k≤4且k≠3D