全文预览

指数函数、幂函数、对数函数增长的比较ppt课件

上传者:科技星球 |  格式:ppt  |  页数:20 |  大小:341KB

文档介绍
3009.965784311001.36×103311.38×1030410.103287812001.72×103618.28×1030710.2288187············借助计算器完成右表6.x的变化区间函数值的变化量y=2xy=x100(x>0)y=log2x(1,10)102310100-13.3219281(10,100)1.27×1030102003.3219281(100,300)2.04×10905.15×102471.5849625(300,500)3.27×101507.89×102690.7369656(500,700)5.26×102103.23×102840.4854268(700,900)8.45×102702.66×102950.3625701(900,1000)1.07×10301103000.1520031(1000,1100)1.36×103311.38×103040.1375035(1100,1200)1.72×103618.28×103070.1255309利用上表完成右表7.8.4、谈函数y=2x,y=x2(x>0),y=log2x的函数值增长快慢的体会。随着x的值越大y=log2x的函数值增长的越来越慢,y=2x和y=x2的函数值增长的越来越快,y=log2x增长比y=2x和y=x2要慢的多。对函数y=2x和y=x2而言,在x比较小时,会存在y=x2比y=2x的增长快的情况,当x比较大时,y=2x比y=x2增长得更快。9.5、在区间(0,+∞)上,当a>1,n>0时,当x足够大时,随着x的增大,y=ax的增长速度越来越快,会超过并远远大于y=xn的增长速度,而y=logax的增长速度则越来越慢.因此,总会存在一个x0,使得当x>x0时,一定有ax>xn>logax.指数函数值长非常快,因而常称这种现象为”指数爆炸”10.

收藏

分享

举报
下载此文档