全文预览

2023年人教版高考数学总复习第二部分考点培优训练 考点二十七平面向量的概念及线性运算

上传者:qnrdwb |  格式:pdf  |  页数:9 |  大小:1167KB

文档介绍
.(能力挑战题)直线/上有不同的三点4B,C,。是直线/外一点,对于向量汤=(l-cos\ra)宓+sinaOC(a是锐角)总成立,则。=\r【解析】因为直线/上有不同的三点4B,C,\r所以存在实数4,使得切=入祀,\r所以汤-OB=A0C-OB),\r即9=(1-4)南+AOC,\r1―4=1-COSo,\r所以I,所以sina=cosa,\r.4=sina,\r因为a是锐角,所以a=45°.\r答案:45°\r4.在AABC中,点M,N满足前/=2沅,夙,=苑.若麻=血+屈,则x=;y\r【解析】MN=MC+CN\r=;AC+;&=;AC+;(AB—AC)\r==ABAC=xAB+yAC,\r26\r所以x=<,y=—I.\r/b\r田生11\r广某:2-6\r5.在△/比'中,及是儿?边上一点且就,=-NC,P是上一点,若亦=mAB+§衣,求\r实数加的值.\r»11■22\r【解析】因为前=-NC,所以苏,=-AC,所以9=mAB+-AC=mAB+鼻AN,因为P\rL»Ot/O\r91\r是BN上一点,所以反P,N三点共线,所以勿十可=1,则R=鼻.\rOO\r6.经过△物8的重心G的直线与以,如分别交于点RQ,设涝5=筋,OQ=nOB,m,n\r£R.,求勿+〃的最小值.\rOB=b,由题意知\r911\r祝=~X-(0Ar+0B)=-(a+b),\rOLtO\r~PQ='0Q—'OP=nb-ma,\rPG—^G—OP=(;-0a+:b,\r使得囱=入画,即nb—ma=几(,一fa+-九》\r由尸,G,。三点共线得,存在实数九,\r—m=/if--/wk\r从而{]消去力得1+1\r-=3.\r、嗔八,nm\r于是/+〃=;(;+1)5+揖\r=1(2+4+32;(2+2)=3.\r3\mn)33\r24\r当且仅当卯=〃=可时,〃?十〃取得最小值为鼻.\rOO

收藏

分享

举报
下载此文档