的式子表示);(2)如图2,,判断的形状并加以证明;(3)在(2)的条件下,连结,若,求的值.(2012年北京中考)在中,,是的中点,是线段上的动点,将线段绕点顺时针旋转得到线段.(1)若且点与点重合(如图1),线段的延长线交射线于点,请补全图形,并写出的度数;(2)在图2中,点不与点重合,线段的延长线与射线交于点,猜想的大小(用含的代数式表示),并加以证明;(3)对于适当大小的,当点在线段上运动到某一位置(不与点,重合)时,能使得线段的延长线与射线交于点,且,请直接写出的范围.例题精讲考点1:手拉手模型:全等和相似包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来(1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)(3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)(4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)?(14年海淀期末)已知四边形和四边形都是正方形,且.(1)如图,连接、.求证:;(2)如图,如果正方形的边长为,将正方形绕着点旋转到某一位置时恰好使得,.①求的度数;②请直接写出正方形的边长的值.【题型总结】手拉手模型是中考中最常见的模型,突破口常见的有哪些信息?常见的考试方法有哪些?(2014年西城一模)四边形是正方形,是等腰直角三角形,,,连接,为的中点,连接,,。(1)如图24-1,若点在边的延长线上,直接写出与的位置关系及的值;(2)将图24-1中的绕点顺时针旋转至图24-2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;ACDGEFB图111124-1图24-2ACDGEFB【题型总结】此类型题目方法多样,你还能找到其他的解题方法吗?另外涉及到的中点辅助线你还能说出几种?