点,向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象。2、函数的性质:①振幅:;②周期:;③频率:;④相位:;⑤初相:。周期函数:一般地,对于函数,如果存在一个非零常数,使得定义域内的每一个值,都满足,那么函数就叫做周期函数,叫做该函数的周期.4、⑴对称轴:令,得对称中心:,得,;⑵对称轴:令,得;对称中心:,得,;⑶周期公式:①函数及的周期(A、ω、为常数,且A≠0).②函数的周期(A、ω、为常数,且A≠0).5、三角函数的图像与性质表格函数性质图像定义域值域最值当时,;当时,.当时,;当时,.既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函数;在上是减函数.在上是增函数;在上是减函数.在上是增函数.对称性对称中心对称轴对称中心对称轴对称中心无对称轴6.五点法作的简图,设,取0、、、、来求相应的值以及对应的y值再描点作图。7.的的图像8.函数的变换:(1)函数的平移变换①将图像沿轴向左(右)平移个单位(左加右减)②将图像沿轴向上(下)平移个单位(上加下减)(2)函数的伸缩变换:①将图像纵坐标不变,横坐标缩到原来的倍(缩短,伸长)②将图像横坐标不变,纵坐标伸长到原来的A倍(伸长,缩短)(3)函数的对称变换:)将图像绕轴翻折180°(整体翻折)(对三角函数来说:图像关于轴对称)将图像绕轴翻折180°(整体翻折)(对三角函数来说:图像关于轴对称)③将图像在轴右侧保留,并把右侧图像绕轴翻折到左侧(偶函数局部翻折)④保留在轴上方图像,轴下方图像绕轴翻折上去(局部翻动)四、三角恒等变换1.两角和与差的正弦、余弦、正切公式:=(其中,辅助角所在象限由点所在的象限决定,,该法也叫合一变形).二倍角公式(2)(3)