数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.4.(2018·南阳二模)在△ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.(1)操作发现若AB=AC,∠BAC=90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CE和BD的位置关系和数量关系是______________,______________;(2)猜想论证在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.(3)拓展延伸如图③,若AB≠AC,∠BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于________度时,线段CE和BD之间的位置关系仍成立(点C,E重合除外)?此时若作DF⊥AD交线段CE于点F,且当AC=3时,请直接写出线段CF的长的最大值是____.5.已知,如图①,△ABC,△AED是两个全等的等腰直角三角形(其顶点B,E重合),∠BAC=∠AED=90°,O为BC的中点,F为AD的中点,连接OF.(1)问题发现①如图①,=_______;②将△AED绕点A逆时针旋转45°,如图②,=_______;(2)类比延伸将图①中△AED绕点A逆时针旋转到如图③所示的位置,请计算出的值,并说明理由.(3)拓展探究将图①中△AED绕点A逆时针旋转,旋转角为α,0°≤α≤90°,AD=,△AED在旋转过程中,存在△ACD为直角三角形,请直接写出线段CD的长.类型二图形面积关系问题(2017·河南)如图①,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.