全文预览

平面向量单元设计

上传者:叶子黄了 |  格式:doc  |  页数:2 |  大小:34KB

文档介绍
使学生认识到向量在刻画现实问题、物理问题以及数学问题中的作用,使学生建立起理解和运用向量概念的背景支持。教科书借助几何直观,并通过与数的运算的类比引入向量运算,以加强向量的几何背景。 2.强调向量作为解决现实问题和数学问题的工具作用。  为了强调向量作为刻画力、速度、位移等现实中常见现象的有力的数学工具作用,本章特别注意联系实际。特别是在概念引入中加强与实际的联系。 另外,向量也是解决数学问题的好工具,例如,和(差)角的三角函数公式、线段的定比分点公式、平面两点间距离公式、平移公式及正弦定理、余弦定理等都可以用向量为工具进行推导;向量作为沟通代数、几何与三角函数的桥梁,是一个很好的数形结合工具,教科书通过“平面几何中的向量方法”进行了介绍,并在第三章用向量方法来推导两角差的余弦公式。这些处理也都是为了体现向量作为基本的、重要的数学工具的地位。  3.强调向量法的基本思想,明确向量运算及运算律的核心地位。  向量具有明确的几何背景,向量的运算及运算律具有明显的几何意义,因此涉及长度、夹角的几何问题可以通过向量及其运算得到解决。另外,向量及其运算(运算律)与几何图形的性质紧密相联,向量的运算(包括运算律)可以用图形直观表示,图形的一些性质也可以用向量的运算(运算律)来表示。这样,建立了向量运算(包括运算律)与几何图形之间的关系后,可以使图形的研究推进到有效能算的水平,向量运算(运算律)把向量与几何、代数有机地联系在一起。   4.通过与数及其运算的类比,向量法与坐标法的类比,建立相关知识的联系,突出思想性。向量及其运算与数及其运算既有区别又有联系,在研究的思想方法上可以进行类比。这种类比可以打开学生讨论向量问题的思路,同时还能使向量的学习找到合适的思维固着点。为此,教科书在向量概念的引入,向量的线性运算,向量的数量积运算等内容的展开上,都注意与数及其运算(加、减、乘)进行类比。

收藏

分享

举报
下载此文档