全文预览

中考数学中的最值问题解法(学生版)

上传者:hnxzy51 |  格式:doc  |  页数:23 |  大小:880KB

文档介绍
2?C.3?D.46.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是【】A.3B.4C.5D.67.如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线AC平分∠BAD,点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB的最小值是.四、应用二次函数求最值:典型例题:例1.正方形ABCD的边长为1cm,M、N分别是BC.CD上两个动点,且始终保持AM⊥MN,当BM=cm时,的面积最大,最大面积为cm2.例2.如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.例3.在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE,垂足为P,PE交CD于点E.(1)连接AE,当△APE与△ADE全等时,求BP的长;(2)若设BP为x,CE为y,试确定y与x的函数关系式。当x取何值时,y的值最大?最大值是多少?(3)若PE∥BD,试求出此时BP的长.例4.如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.例5.等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1)。(1)求证:AM=AN;(2)设BP=x。①若,BM=,求x的值;

收藏

分享

举报
下载此文档