函数图象如图所示.(1)当时,分别求.与之间的函数关系式.(2)如果甲.乙两班均保持前6h的工作效率,通过计算说明,当时,甲.乙两班植树的总量之和能否超过260棵.Oy(棵)x(时)36812030(3)如果6h后,甲班保持前6h的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.环节四:课堂小结本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.意图:引导学生自己小结运用一次函数解决实际问题的主要方法。说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结。环节五:作业作业:习题4.7第1--3小题六、教学设计反思(1)设计理念函数是研究现实世界变化规律的一个重要模型,是初中阶段数学学习的一个重要内容.在本节教学设计中,进一步体现了“问题情境——建立数学模型——应用与拓展”的模式.让学生从实际问题中抽象出函数及一次函数的概念、图象、性质,进而利用一次函数及其图象解决有关现实问题.(2)突出重点、突破难点的策略本节课是在学生已经掌握了一次函数的图象和有关性质的基础上,对有关知识进行应用和拓展.在教学过程中,教师应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高学生解决实际问题的能力.附:板书设计§4.4一次函数的应用(三)一、例题讲解二、问题解决三、反馈练习四、课堂小结五、作业